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Abstract
Canalization of genetic regulatory networks has been argued to be favoured
by evolutionary processes due to the stability that it can confer to phenotype
expression. We explore whether a significant amount of canalization and partial
canalization can arise in purely random networks in the absence of evolutionary
pressures. We use a mapping of the Boolean functions in the Kauffman N-K
model for genetic regulatory networks onto a k-dimensional Ising hypercube
(where k = K) to show that the functions can be divided into different classes
strictly due to geometrical constraints. The classes can be counted and their
properties determined using results from group theory and isomer chemistry.
We demonstrate that partially canalizing functions completely dominate all
possible Boolean functions, particularly for higher k. This indicates that partial
canalization is extremely common, even in randomly chosen networks, and
has implications for how much information can be obtained in experiments on
native state genetic regulatory networks.

PACS numbers: 89.75.Hc, 87.10.+e, 02.10.Ox, 87.16.Yc

1. Introduction

To preserve the identity of a species, biological organisms must be capable of maintaining
relatively stable phenotype expression in the face of a variety of environmental factors and
a certain level of genetic randomness. Experimental observations have shown that certain
developmental traits appear to control the expression of other traits. Waddington [1] termed
the control of one trait by another ‘canalization’, a name derived from the analogy that the
developmental pathway of the organism is like one particular canal in a floodplain, and the
further development of the organism is completely constrained by that canal. Canalization
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produces robustness because it suppresses those changes in phenotype expression that would
require development to deviate from the canalized pathway. For this reason it has been
suggested that organisms evolve to be canalized.

The significance of canalization and how it might evolve remains a subject of debate [2].
Since canalization suppresses the expression of genetic variability, experimental detection
of the existence of a canalized trait generally involves perturbing the organism out of the
canalized state [3]. There is good evidence for the existence of canalization in a variety of
organisms [4–6]; however, the microscopic mechanism for canalization is not well established.
Presumably canalization is produced genetically by the complex interactions between genes
known as the genetic regulatory network (GRN). As we shall see, however, a certain amount of
canalization is expected to appear in GRNs even in the absence of an evolutionary preference
for canalization. An open question is whether or not real GRNs contain more canalization
than would be expected from a random graph, which could indicate that evolution favours
canalization.

Genetic regulatory networks have been proposed as the mechanisms through which
identical genetic information is expressed as different cell types within the same organism,
and they can also control distinct stages in the life cycle of an individual cell. Depending on
the conditions experienced by a given cell and the regulatory interactions between genes, at
any moment a distinct subset of all possible genes is activated. The state or temporal pattern
of expression produces particular cell types. Organisms with larger numbers of genes have a
larger number of potentially realizable cell types. There has been a recent dramatic increase
in the amount of experimental information available on the structure of genetic regulatory
networks in a range of organisms, including E. coli [7], budding yeast S. cervisiae [8, 9],
Drosophila species [10], Xenopus [11] and the embryo of the sea urchin S. purpuratus [12].
In the simplest representation, the nodes of the network are genes and the links between genes
describe their interactions. Generally, the interactions are directional, so that the expression
of gene A may depend on, that is ‘listen to,’ the expression of gene B, but the expression of
gene B does not necessarily depend directly on the expression of gene A. The connectivity of
a gene indicates how many other genes it ‘listens to’ when determining whether to be in an
active or inactive state. Analysis of the connectivity of E. coli [13, 14] and other GRNs shows
a broad distribution of connectivity among the genes, with a significant amount of negative
autoregulation. In the context of canalization, several questions arise. What types of structures
in a GRN produce canalization of a trait? Do these structures arise randomly or do they only
appear because of a special evolutionary preference? How significant is canalization on the
scale of the entire regulatory network?

The easiest way to approach such questions is through a simplified model for a genetic
regulatory network such as the Kauffman N-K model [15], which represents the GRN as a
random Boolean network. The N-K model has been studied extensively [16–23]. Certain
features of real GRNs, including the ability of a single network to produce multiple cell types
(which appear as multiple attractors for the network), are captured by the N-K model. In
this model, each gene is represented by a single binary element which can be either on or
off in the state 1 or 0. Every gene receives input from a fixed set of k other genes that are
randomly chosen when the network is constructed, where k = K . Depending on the states
of its input genes, a given gene determines whether to express the state 1 or 0 according to
a randomly chosen Boolean function of k variables. An example of a Boolean function for
k = 3 is given in table 1. The value of k may vary from gene to gene. The system evolves
in discrete time steps and all genes update their states simultaneously. The entire network
eventually settles into an attractor cycle which produces a specific series of network states as
a function of time. The initial conditions of the states of the genes in the network determine
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Table 1. An example of a k = 3 Boolean function.

in1 in2 in3 out

0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

which of the available attractors the network will reach. The different attractors are interpreted
as representing different cell types expressed by a given set of genes.

A gene with connectivity k employs one of the 22k

possible Boolean functions to determine
its response to its k inputs. Canalization occurs in a Boolean function if the output of the gene
is fixed by a particular value of at least one of its input genes, regardless of the values of any
other inputs to that gene. In this case, the input that fixes the output of the regulated gene is a
canalizing input. Note that one value of an input gene, say value 0, can be a canalizing input
even if the other value 1 from the same input gene is not canalizing. Canalization also occurs
in a Boolean function if particular values of two or more inputs together suffice to guarantee
the next state of the regulated gene, regardless of the values of any other inputs to the gene. In
this case, the inputs that together fix the output of the regulated gene are said to be collectively
canalizing inputs. How canalizing a particular Boolean function is can be quantified by the set
of numbers Pn, n = 0, 1, . . . , k − 1, which are the fraction of sets of n individual input values
that are canalizing or collectively canalizing. Note that Boolean functions with P0 = 1 have
a fixed output state regardless of their inputs. Boolean functions can also be characterized by
their internal homogeneity p which is defined as the fraction of 1s or 0s, whichever is larger,
output by the function due to all of the possible sets of input [24].

A consequence of canalization is that some of the interactions between genes may become
irrelevant. As an extreme example, if the Boolean function of a particular gene has P0 = 1,
this gene will be insensitive to the state of the rest of the network and its interactions with its
input genes are irrelevant. The number of canalizing functions as a function of k was derived
recently in [25]. Although the behaviour of canalizing functions would certainly contribute to
the stability of a network that is subjected to random perturbations, such an extreme behaviour
has a detrimental effect on the ability of the network to respond to changing conditions. In
contrast, other Boolean functions successfully maintain a degree of stability while retaining the
ability to change. For these Boolean functions, which we will refer to as ‘partially canalizing’,
the gene may ignore one or more of its inputs under certain conditions. In some cases, the
gene completely ignores n inputs at all times, so that its effective connectivity is keff = k − n.
In other cases, if a particular input has the value 1, for example, the gene ignores the remaining
inputs, but if that same input has the value 0, the gene listens to its other inputs. Here, the
effective connectivity of the gene depends on the current state of the network. More complex
categories are also possible, such as the nested canalizing functions proposed by Kauffman
[19, 26]. Since the fraction of canalizing functions drops rapidly with k, as shown in [27], it
has been assumed that canalization plays a less important role at high k compared to small
k [28]. The class of partially canalizing functions is considerably larger than the class of
canalizing functions; however, is it large enough to dominate all classes of functions? As
we will show below on mathematical grounds, the partially canalizing functions completely
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Table 2. The sixteen k = 2 functions and their division into four classes.

in A B C D

00 0 1 0 1 0 1 1 0 0 0 0 1 1 1 1 0
01 0 1 0 1 1 0 0 1 0 0 1 0 1 1 0 1
10 0 1 1 0 0 1 0 0 1 0 1 1 0 1 0 1
11 0 1 1 0 1 0 0 0 0 1 1 1 1 0 1 0

P0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
P1 1 1 1

2
1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2 0 0

dominate the class of all possible Boolean functions as k increases, so that the emergence of
canalization is essentially unavoidable in a complex network.

2. Results

Our approach is to examine the properties of individual Boolean functions and to determine
the amount of canalization expected from a random sample of functions. Since the number of
possible Boolean functions explodes combinatorially with k, we employ powerful techniques
from group theory and isomer chemistry to classify the various functions and help obtain their
properties. We provide results through k = 5 with these methods. The techniques can be
applied readily to higher k, but become increasingly complicated. Therefore, to find results
for larger k through k = 8 we employ statistical sampling methods.

For small enough k, the canalization properties of the functions can be obtained directly
from inspection. When there are two inputs for each gene, k = 2, as shown in table 2, there
are only 16 possible functions which fall into four classes: fixed (or completely canalizing)
with P0 = 1; sensitive to both inputs with P0 = 0 and P1 = 0; and the partially canalizing
cases with P0 = 0 and P1 = 1/2: sensitive to only one input; sensitive to one or two inputs
depending on the value of one input.

Inspection becomes a less viable option as k increases. In a simulation study of the
evolution properties of the different Boolean functions, Bassler et al [29] observed that
functions with k = 3 inputs fell into 14 distinct classes. In their study all of the functions that
were members of the same class evolved, on average, with equal probability. Upon examining
representative functions from each class, they categorized the functions according to their
canalization properties Pn. The triple of numbers P0, P1 and P2 possible for k = 3 was
nearly enough, but not quite enough, to distinctly identify each class of function. Whether
the function was symmetric about its midpoint also needed to be considered in defining the
classes. These observations about the structures of the functions belonging to each class were
essentially empirical. Class membership could be important for determining the properties of
real networks since we expect that on average all functions in the same class will evolve with
equal probability.

Here, we demonstrate that there is a fundamental geometric reason for the existence of
distinct function classes. In the N-K model, a given function is normally represented by a
Boolean string of numbers, such as 1001, of length 22k

. Comparing different functions by
inspection amounts to comparing strings of numbers with each other. Instead of using this
representation, we consider an alternative, equivalent representation of each function in the
form of a unit k-dimensional Ising hypercube. Each axis of the k-dimensional hypercube (or
simply a k-hypercube) represents one of the k input variables. The coordinates on a given
axis indicate the state of the corresponding input variable. Each vertex of the k-hypercube
represents an output state of the gene. In figure 1, we illustrate the mapping of the input
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Figure 1. Left: mapping of the four possible input states for k = 2 onto the vertices of a square.
Right: mapping of the eight possible input states for k = 3 onto the vertices of a cube.

Figure 2. Representation of the sixteen k = 2 functions on Ising squares. The functions are
grouped into four classes. The members of each class are clearly related by symmetry operations
on the square plus parity.

states onto a square and cube for k = 2 and k = 3, respectively. The output state of the gene
corresponding to an input represented by a particular vertex can be indicated by colouring
the vertex white or black to represent the values 0 or 1. It is important to note that this
system obeys parity symmetry: replacing all 0’s with 1’s and vice versa results in the same
canalization properties for the function.

With this hypercube mapping, it becomes clear that functions which belong to the same
class have the geometric property that they can be rotated into each other by symmetry
operations on the k-hypercube plus parity. In mathematical terms, the classes that were
identified empirically in [29] are group orbits. We illustrate the mapping for the sixteen k = 2
functions in figure 2, where the rotational plus parity symmetries of the functions belonging
to each of the four classes are obvious. In figure 3, we illustrate one representative cube for
each of the 14 function classes in k = 3. The remaining functions in each class are obtained
by applying all possible rotations plus parity to the cube. In the hypercube representation,
the canalization properties of a Boolean function correspond to the fraction of homogeneous
hypersurfaces. That is, for a Boolean function with k inputs Pn is proportional to the fraction
of the (k − n)-dimensional hypersurfaces that have all vertices the same. For the two classes
with P1 = 1/2 in figure 2, two of the four one-dimensional sides are uniformly coloured.

We can now employ results from group theory to obtain information about the class
structure of functions at all values of k, not merely those values of k which are small enough
to permit direct inspection of all functions. The total number of classes for a given k can be
obtained by an application of the orbit-counting theorem,

PG(x1, x2, . . .) = 1

|G|
∑

g∈G

|Xg| (1)
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Figure 3. A single representative Ising cube mapping of each of the 14 classes in k = 3.

Here, the symmetry group G of the set X contains |G| symmetry operators g, which together
include all transformations of the hypercube onto itself. The set of elements in X that are left
invariant by g is denoted as Xg . In order to find Xg , note that the mapping of all k-hypercube
vertices onto themselves by a given symmetry operator g can be written as a permutation of
the vertex numbers. As a result, each operator g can be expressed in terms of its cycle structure
x

b1
1 x

b2
2 · · · xbn

n , where n = k. This notation indicates that g contains b1 cycles of length 1,
b2 cycles of length 2, . . . bn cycles of length n [31]. For example, the k = 2 permutation
(14)(2)(3) has the cycle representation x2

1x2 since it has two cycles of length 1 and a single
cycle of length 2. To apply the orbit-counting theorem, we must first construct all of the
operators of our group, sum the number of functions left invariant by each operator (the fixed
points of that operator) and divide by the total number of operators.

The number of functions in, or size of, a class is given by the number of elements in the
group divided by the number of elements in the isometry group of the functions in the class.
The isometry group of a class is the subgroup of the full group that describes the symmetry
of a function in the class. Note that the particular isometry group will vary from function to
function in the class, but the size of the isometry group will remain invariant.

First, consider the number of symmetry operations |G| in our group, which is the
k-hypercube crossed with parity. The symmetry group for the k-hypercube is isomorphic
to the hyperoctahedral group On with n = k, which has n!2n symmetry transformations [30].
As an example, there are eight operators for the k = 2 square. There is one operator with cycle
structure x4

1 : (1)(2)(3)(4); two operators with cycle structure x4: (1243) and (3421); three
operators with cycle structure x2

2 : (12)(34), (13)(24) and (14)(23); and two operators with cycle
structure x2

1x2: (14)(2)(3) and (23)(1)(4). When these operators are combined with parity,
which doubles the number of symmetry operators, we obtain a total of |G| = 16 operators.
For each operator without parity, the number of functions left invariant is equal to 2Nc , where
Nc = ∑k

i=1 bi is the total number of cycles in the operator. Parity must be treated separately;
no functions are left invariant by the parity operator with any k-hypercube operator containing
at least one cycle of length 1. Thus there are 2Np functions left invariant for the eight operators
which include parity, where Np = (1 − �(b1))

∑k
i=1 bi and � is the Heaviside step function.

Applying the orbit-counting theorem produces the correct number of classes, but only if parity
is included. In the case of k = 2 without parity, PG = (1/8)(24 + 2(2) + 3(22) + 2(23)) = 6
classes. Including parity gives PG = (1/16)(24 + 2(2) + 3(22) + 2(23) + 2(2) + 3(22)) = 4
classes, which is the correct result.

We now face the task of identifying all operators g for the k-hypercube. This can be
performed by simple inspection in k = 2 and k = 3, but it becomes more complicated to keep
track of higher dimensional rotation symmetries. Fortunately, this problem was solved in the
middle of the last century, when Harrison [32] derived a formula that produces the complete
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Table 3. Cycle polynomials for k = 1 through 5 and the number of classes PG for each k.

k Cycle polynomial PG

1 (1/2)
(
x2

1 + x2
)

2

2 (1/8)
(
x4

1 + 3x2
2 + 2x2

1x2 + 2x4
)

4

3 (1/48)
(
x8

1 + 13x4
2 + 8x2

1x2
3 + 8x2x6 + 6x4

1x2
2 + 12x2

4

)
14

4 (1/384)
(
x16

1 + 12x8
1x4

2 + 51x8
2 + 12x4

1x6
2 + 32x4

1x4
3 + 48x2

1x2x
3
4 + 84x4

4

+ 96x2
2x2

6 + 48x2
8

)
238

5 (1/3840)
(
x32

1 + 384x3
10x2 + 20x16

1 x8
2 + 60x8

1x12
2 + 231x16

2 + 80x8
1x8

3

+ 320x2
12x

2
4 + 240x4

1x2
2x6

4 + 240x4
2x6

4 + 520x8
4 + 384x2

1x6
5

+ 160x4
1x2

2x4
3x2

6 + 720x4
2x4

6 + 480x4
8

)
698 635

cycle representation for all k in the group of interest to us, called the ‘Zyklenzeiger’ in the
notation of [32]. We have used this formula to obtain the cycle representations through k = 5,
as shown in table 3. The number of classes for each k, PG, is also listed in table 3. Clearly,
obtaining the properties of the classes by inspection is not feasible by the time k = 5.

What we are interested in is not simply how many different classes are present, but
also the size of each class, and the structure, particularly the canalization properties, of the
functions belonging to them. For example, how many classes are there which have the same
internal inhomogeneity p? To find this, we use an application of Pólya’s theorem [33] which
is frequently used in isomer chemistry [34]. In isomer chemistry, for a molecule composed of
exactly two different types of atoms, the terms A and B can be used to represent the different
types of atoms. In our case, A and B represent 0 and 1, such that either A = 0 and B = 1 or
B = 0 and A = 1. Using the generating polynomial, substitute in a term of the form Aa + Ba

for each xa . Divide the result by the total number of operators, including parity. Then, drop
all terms in the result where the exponent of B exceeds that of A, as these terms are already
accounted for by parity. The multiplicity of each term indicates how many of the classes are
of that form. For example, representatives of classes of the form A2B2 are 1010 and 1100.
This gives us the desired result of how many classes Nh there are for each value of the internal
homogeneity p. Since we also know that the total number Nf (m, n) of functions of the form
AmBn is simply Nf (m, n) = (2 − δm,n)(2k)!/(m!n!), where m + n = 2k , we can estimate the
number of functions in each class by the average size of a class, 〈Sc〉 = Nf /Nh. The class
structure and average class size for k = 1 through 5 are listed in tables 4–7. We note that the
actual size Sc of each class is given by the number of operators that preserve the symmetry of
that particular function class. Thus, as discussed earlier, the maximum class size Smax

c is equal
to the total number of operators

Smax
c = k! 2k+1. (2)

Smax
c = 16 for k = 2, 96 for k = 3, 768 for k = 4, and 7680 for k = 5. This is consistent with

the average class sizes which we obtain.
We also note that isomer chemistry provides a simple means for determining whether two

randomly selected functions belong to the same class. Construct the adjacency matrix for the
k-hypercube. Along the diagonal, place the values A or B corresponding to the colours of
the vertices of one of the functions under consideration, and then find the determinant of the
resulting matrix. Each function class has a unique determinant, so performing this procedure
on both functions provides an immediate test of whether the two functions fall into the same
class.
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Table 4. Class structure for k = 2.

Class type Nh 〈Sc〉
A4 1 2
A3B 1 8
A2B2 2 3

Table 5. Class structure for k = 3.

Class type Nh 〈Sc〉
A8 1 2
A7B 1 16
A6B2 3 18.667
A5B3 3 37.333
A4B4 6 11.667

Table 6. Class structure for k = 4.

Class type Nh 〈Sc〉
A16 1 2
A15B 1 16
A14B2 4 60
A13B3 6 186.667
A12B4 19 191.58
A11B5 27 323.56
A10B6 50 320.32
A9B7 56 408.57
A8B8 74 173.9

Table 7. Class structure for k = 5.

Class type Nh 〈Sc〉
A32 1 2
A31B 1 64
A30B2 5 198.4
A29B3 10 992
A28B4 47 1530.2
A27B5 131 3074.4
A26B6 472 3839.8
A25B7 1 326 5076.7
A24B8 3 779 5566.7
A23B9 9 013 6224.1
A22B10 19 963 6463.2
A21B11 38 073 6777.7
A20B12 65 664 6877.2
A19B13 98 804 7031.6
A18B14 133 576 7058.7
A17B15 158 658 7131.3
A16B16 169 112 3554.3

To show that canalization remains important even as k increases, we measured the average
number of homogeneous d-dimensional sides present in a series of randomly generated
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Figure 4. Average fraction cd of homogeneous d-dimensional sides in randomly selected Boolean
functions versus k for (a) d = 1, (b) d = 2, (c) d = 3 and (d) d = 4.

functions for different k. We denote the number of d-dimensional homogeneous sides (which
produce canalization) that a k-dimensional Boolean function has as C(d, k). The total number
of d-dimensional sides is

Nd(k) = 2k−dk!

(k − d)!d!
. (3)

Note that the canalization properties Pn discussed in the beginning of this paper are related
to C(d, k) as Pn = C(k − n, k)/Nk−n(k). In figure 4, we plot the average fraction of
homogeneous d-dimensional sides, cd = 〈C(d, k)〉/Nd(k), for d = 1 through 4 and k = 2
through 8, obtained numerically. We sampled up to 1×108 functions generated with p = 0.5.
For the case of d = 1, shown in figure 4(a), on average over 50% of the sides of the hypercube
are uniformly coloured even for k = 8, indicating a significant amount of partial canalization.
As d increases, cd drops considerably, as illustrated in figures 4(b)–(d) for d = 2, 3 and 4.
Thus, the most prevalent type of partial canalization is that associated with homogeneous
d = 1 sides.

The mapping of Boolean functions onto k-hypercubes we have described here provides a
means of constructing k + 1 functions recursively from pairs of k functions. A k + 1 function
can be composed by stacking together two k functions. Depending on the symmetry properties
of the two k functions chosen, there may be only one possible class of k + 1 functions that
can be constructed from those k functions or there may be several classes that depend on the
relative orientation of the k functions when they are stacked together. This allows us to bound
the amount of canalization present. When we assemble a k + 1 function out of two k functions,
we must have

Nd(k + 1) � C(d, k + 1) �
2∑

i=1

Ci(d, k). (4)

The lower bound is obtained from the fact that the value of C(d, k + 1) must be at least as
large as the sum of the values Ci(d, k) of the two functions that have been combined. This is
simply a consequence of the fact that homogeneous d-dimensional sides cannot be destroyed
as a result of combining two functions. The new sides that are added when the functions are
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joined may or may not be homogeneous, depending on which two k functions are combined
and how they are oriented with respect to each other. It is possible that none of the new
sides would be homogeneous, in which case the lower limit of equation (4) would apply. The
internal homogeneity p(k + 1) of the composite function is given simply by

p(k + 1) = 1

2

2∑

i=1

p(k). (5)

3. Discussion

Now that we have used the mapping of the functions onto k-hypercubes in order to obtain
information about the class structures of the functions for several values of k, we can make
some observations regarding how prevalent partial canalization is among all possible functions.
Previous estimates of the fraction of canalizing functions indicated that canalization was of
less and less importance as k increased. These estimates used a very narrow definition of
canalization, however. Rather than counting the number of partially canalizing functions,
consider the number of completely uncanalizing functions. These functions have the property
that they are sensitive to all values of all inputs. There are exactly two such functions for
each k, regardless of k. All of the remaining functions are at least partially canalizing. This
means that partial canalization completely dominates the classes of functions, especially as k
increases.

The rampant occurrence of partial canalization has important implications for recent
work on mapping of genetic regulatory networks. The experiments typically map only those
connections between genes which are active in the native state of the organism. Here, ‘active’
means that a change in one gene directly affects the second gene. This technique will not
detect many of the partially canalizing interactions that could exist between genes. In the
case where the partial canalization is of the form that a gene completely ignores one or more
of its inputs, the actual value of k for that gene is larger than the apparent value of k. This
could potentially impact the distributions of k that have been extracted from experimental
measurements. A far more dangerous case is a partially canalizing interaction between genes
in which a gene ignores one or more inputs when a canalizing input has a value of 1 (for
example), but responds to the other inputs when that same canalizing input has a value of 0. If
the gene ignores its inputs in the native state, the connection between that gene and its ignored
inputs will not be detected experimentally. Suppose that the canalizing gene is identified as
causing a disease state. Consultation of the experimentally determined genetic network map
indicates that this gene does not appear to control anything else of importance. If, however,
the canalizing gene is treated and switches to the state opposite from its canalizing value, the
gene that received the canalizing input will suddenly start to respond to the values of its other
inputs. This could result in unexpected side effects or worse effects. Thus, from a purely
combinatorial point of view, it is important to consider all possible interactions between genes
and not merely those which are expressed in the native state.

The natural predominance of canalization as k increases suggests that the canalization
observed experimentally could be due simply to the high fraction of the available Boolean
functions which are canalizing, rather than evolutionary pressure to develop canalizing
functions. It is, however, unclear how much canalization is present in real genetic regulatory
networks, as discussed in [35]. It is possible that there is in fact a special evolutionary
preference for canalization, which could result in real networks having even higher levels
of canalization than would be expected from random selection at increasing k. In order
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to answer this question it would be necessary to measure the excess canalization, which is
the difference between Pns observed in real networks and that in random networks [36]. The
existing experimental data on genetic regulatory networks is not extensive enough to determine
whether an interaction between genes is canalizing or partially canalizing. As noted above,
the difference between the two types of interactions can become important when the network is
perturbed away from its native state. More experimental work is needed in order to determine
the prevalence of canalization and/or partial canalization in actual genetic regulatory networks.
The Boolean models can offer guidance in determining how likely it would be to observe any
type of canalization in a random network.

4. Conclusion

In conclusion, we have used a mapping of the Boolean functions in the Kauffman model for
genetic regulatory networks onto a k-hypercube to obtain information about the classes into
which the functions can be divided. These classes arise due to geometrical constraints and can
be constructed by applying all possible rotations of the k-hypercube plus parity to each function.
The classes can be counted and their properties determined using results from group theory
and isomer chemistry. We emphasize that partially canalizing functions completely dominate
all possible functions, particularly for higher k. This indicates that partial canalization should
be extremely common, even in a randomly chosen network, and has implications for how
much information can be obtained in experiments on native state genetic regulatory networks.
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